
Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I.
Author(s) -
Richard Lynn,
MaryAnn Bjornsti,
Paul L. Caron,
James C. Wang
Publication year - 1989
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.86.10.3559
Subject(s) - biochemistry , biology , active site , topoisomerase , dna , site directed mutagenesis , saccharomyces cerevisiae , microbiology and biotechnology , enzyme , gene , mutant
Extensive digestion of the covalent intermediate between DNA and Saccharomyces cerevisiae DNA topoisomerase I with trypsin yields a 7-amino acid peptide covalently linked to DNA. Direct sequencing of the DNA-linked peptide identifies Tyr-727 as the active site tyrosine that forms an O4-phosphotyrosine bond with DNA when the enzyme cleaves a DNA phosphodiester bond. Site-directed mutagenesis of the cloned yeast TOP1 gene encoding the enzyme confirms the essentiality of Tyr-727 for the relaxation of supercoiled DNA by the enzyme. From amino acid sequence homology, Tyr-771 and -773 are readily identified as the active site tyrosines of Schizosaccharomyces pombe and human DNA topoisomerase I, respectively. Sequence comparison and site-directed mutagenesis also implicate Tyr-274 of vaccinia virus DNA topoisomerase as the active site residue. There appears to be a 70-amino acid domain near the carboxyl terminus of eukaryotic DNA topoisomerase I and vaccinia topoisomerase, within which the active site tyrosine resides.