z-logo
open-access-imgOpen Access
Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type I tat proteins occurs in the absence of de novo protein synthesis.
Author(s) -
KuanTeh Jeang,
Peter R. Shank,
Ajit Kumar
Publication year - 1988
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.85.21.8291
Subject(s) - long terminal repeat , biology , chloramphenicol acetyltransferase , provirus , hiv long terminal repeat , murine leukemia virus , microbiology and biotechnology , gene , cycloheximide , homologous chromosome , virology , virus , promoter , gene expression , genome , protein biosynthesis , genetics
The genomes of human retroviruses [human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus (HTLV-I)] encode positive trans-activator proteins, named tat. In the presence of tat, the transcriptional activity of the homologous HIV-1 or HTLV-I long terminal repeat (LTR) promoter is markedly increased. We have constructed mammalian cell lines that contain stably integrated copies of a HIV-1 or a HTLV-I LTR-chloramphenicol acetyltransferase (CAT) gene. When presynthesized HIV-1 or HTLV-I tat proteins were separately introduced into these cells in the presence of cycloheximide, we found a strong increase in the steady-state expression of the homologous viral LTR. Nuclear "run-on" assays verified that this tat-mediated enhancement, occurring in the absence of de novo cellular protein synthesis, was due to increased transcriptional initiation at the LTR promoter. We conclude that one aspect of transcriptional trans-activation of viral LTR by the HIV-1 and HTLV-I tat proteins does not require the production of new cellular proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here