
Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type I tat proteins occurs in the absence of de novo protein synthesis.
Author(s) -
KuanTeh Jeang,
Peter R. Shank,
Ajit Kumar
Publication year - 1988
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.85.21.8291
Subject(s) - long terminal repeat , biology , chloramphenicol acetyltransferase , provirus , hiv long terminal repeat , murine leukemia virus , microbiology and biotechnology , gene , cycloheximide , homologous chromosome , virology , virus , promoter , gene expression , genome , protein biosynthesis , genetics
The genomes of human retroviruses [human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus (HTLV-I)] encode positive trans-activator proteins, named tat. In the presence of tat, the transcriptional activity of the homologous HIV-1 or HTLV-I long terminal repeat (LTR) promoter is markedly increased. We have constructed mammalian cell lines that contain stably integrated copies of a HIV-1 or a HTLV-I LTR-chloramphenicol acetyltransferase (CAT) gene. When presynthesized HIV-1 or HTLV-I tat proteins were separately introduced into these cells in the presence of cycloheximide, we found a strong increase in the steady-state expression of the homologous viral LTR. Nuclear "run-on" assays verified that this tat-mediated enhancement, occurring in the absence of de novo cellular protein synthesis, was due to increased transcriptional initiation at the LTR promoter. We conclude that one aspect of transcriptional trans-activation of viral LTR by the HIV-1 and HTLV-I tat proteins does not require the production of new cellular proteins.