
cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases.
Author(s) -
M. Alejandra Mandel,
Yoshinori Moriyama,
Jeffrey D. Hulmes,
YuChing E. Pan,
Hannah Nelson,
Nathan Nelson
Publication year - 1988
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.85.15.5521
Subject(s) - biology , biochemistry , atpase , gene , homology (biology) , microbiology and biotechnology , enzyme
Vacuolar H+-ATPases function in generating protonmotive force across the membranes of organelles connected with the vacuolar system of eukaryotic cells. This family of H+-ATPases is distinct from the two other families of H+-ATPases, the plasma membrane-type and the eubacterial-type. One of the subunits of the vacuolar H+-ATPase binds N,N'-dicyclohexylcarbodiimide (DCCD) and has been implicated in the proton-conducting activity of these enzymes. We have cloned and sequenced the gene encoding the DCCD-binding protein (proteolipid) of the H+-ATPase of bovine chromaffin granules. The gene encodes a highly hydrophobic protein of 15,849 Da. Hydropathy plots revealed four transmembrane segments, one of which contains a glutamic residue that is the likely candidate for the DCCD binding site. Sequence homology with the vacuolar proteolipid and with the proteolipids of eubacterial-type H+-ATPases was detected. The proteolipids from Escherichia coli, spinach chloroplasts, and yeast mitochondria matched better to the NH2-terminal part of the vacuolar protein. The proteolipids of bovine mitochondria and Neurospora mitochondria matched better to the COOH-terminal end of the vacuolar proteolipid. These findings suggest that the proteolipids of the vacuolar H+-ATPases were evolved in parallel with the eubacterial proteolipid, from a common ancestral gene that underwent gene duplication.