
A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia.
Author(s) -
Shu Jin Chan,
Susumu Satoh,
Philip A. Gruppuso,
Robert Schwartz,
Donald F. Steiner
Publication year - 1987
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.84.8.2194
Subject(s) - proinsulin , biology , genetics , insulin , microbiology and biotechnology , allele , mutation , coding region , gene , endocrinology
Gruppuso et al. [Gruppuso, P.A., Gordon, P., Kahn, C. R., Cornblath, M., Zeller, W. P. & Schwartz, R. (1984) N. Engl. J. Med. 311, 629-634] have recently described a family in which hyperproinsulinemia is inherited in an autosomal dominant pattern, suggesting a structural abnormality in the proinsulin molecule as the basis for this disorder. However, unlike two previous kindreds with a similar syndrome, the serum proinsulin-like material in this family did not appear to be an intermediate conversion product but instead behaved like normal human proinsulin by several criteria. To further characterize this disorder we isolated and sequenced the insulin gene of the propositus. Leukocyte DNA was cloned into lambda-WES and recombinants containing the two insulin alleles, lambda MD41 and lambda MD51, were isolated by plaque hybridization. DNA sequencing of lambda MD51 showed that it contained the normal coding sequence for human preproinsulin. Sequence analysis of lambda MD41, however, revealed a single nucleotide substitution in the codon for residue 10 of proinsulin (CAC----GAC) that predicts the exchange of aspartic acid for histidine in the insulin B chain region. This mutation was also found in an insulin allele cloned from a second affected family member (propositus's father). These results, along with the linkage analysis of Elbein et al. [Elbein, S.C., Gruppuso, P., Schwartz, R., Skolnick, M. & Permutt, M.A. (1985) Diabetes 34, 821-824], strongly implicate this mutation as the cause of the hyperproinsulinemia in this family. Inhibition of the conversion of proinsulin to insulin may be related to altered folding and/or self-association properties of the [Asp10]proinsulin.