z-logo
open-access-imgOpen Access
Regulation of the protein glycosylation pathway in yeast: structural control of N-linked oligosaccharide elongation.
Author(s) -
Pramod K. Gopal,
Clinton E. Ballou
Publication year - 1987
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.84.24.8824
Subject(s) - mannose , glycosylation , biochemistry , mutant , saccharomyces cerevisiae , oligosaccharide , chemistry , n linked glycosylation , yeast , golgi apparatus , glycoprotein , glycan , gene , endoplasmic reticulum
The yeast Saccharomyces cerevisiae X2180 strain with the mnn1 mnn2 mnn9 mutations, all of which affect mannoprotein glycosylation, synthesizes N-linked oligosaccharides having the following structure: (Formula: see text) whereas the mnn1 mnn2 mutant extends the alpha 1----6-linked backbone of some of the core oligosaccharides by adding 20-30 mannose units. Membrane fractions from the mnn1 mnn2 and mnn1 mnn2 mnn9 mutants are equally effective in catalyzing transfer from GDP-[3H]mannose to add mannose in both alpha 1----2 and alpha 1----6 linkages to an oligosaccharide having the following structure: (Formula: see text) but neither membrane preparation can utilize the homologous mnn1 mnn2 mnn9 oligosaccharide as an acceptor. Thus, addition of the alpha 1----2-linked mannose side chain to the terminal alpha 1----6-linked mannose in oligosaccharides of the mnn9 mutant inhibits the elongation reaction and may serve as an important structural control of mannoprotein glycosylation. The mnn9 mutation also increases the transit time for invertase secretion, meaning that this mutation could affect the processing machinery in the Golgi apparatus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here