z-logo
open-access-imgOpen Access
Synergy of interleukin 1 and granulocyte colony-stimulating factor: in vivo stimulation of stem-cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice.
Author(s) -
Malcolm A.S. Moore,
David J. Warren
Publication year - 1987
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.84.20.7134
Subject(s) - haematopoiesis , stem cell , progenitor cell , bone marrow , granulocyte , granulocyte colony stimulating factor , biology , interleukin 3 , immunology , myeloid , colony stimulating factor , cancer research , spleen , microbiology and biotechnology , chemotherapy , t cell , immune system , antigen presenting cell , genetics
The human bladder carcinoma cell line 5637 produces hematopoietic growth factors [granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)] and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1 alpha (IL-1 alpha). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1 alpha and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or recombinant human IL-1 alpha accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F1 mice. The combination of IL-1 alpha and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. This was accompanied by accelerated regeneration of spleen colony-forming units and erythroid, myeloid, and megakaryocytic progenitor cells in marrow and spleen, with enhanced erythroid and granulocytic differentiation. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here