z-logo
open-access-imgOpen Access
Gangliosides as bimodal regulators of cell growth.
Author(s) -
Sarah Spiegel,
Peter H. Fishman
Publication year - 1987
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.84.1.141
Subject(s) - cholera toxin , 3t3 cells , cell growth , biology , ganglioside , microbiology and biotechnology , protein subunit , g alpha subunit , growth factor , epidermal growth factor , cell , biochemistry , cell culture , transfection , receptor , endocrinology , genetics , gene
The B subunit of cholera toxin, which binds specifically to several molecules of ganglioside galactosyl-(beta 1----3)-N-acetylgalactosyminyl(beta 1----4)-[N- acetylneuraminyl(alpha 2----3)]-galactosyl(beta 1----4)glucosyl(beta 1----1) ceramide (GM1) on the cell surface, stimulated DNA synthesis and cell division in quiescent, nontransformed mouse 3T3 cells in a dose-dependent manner. In addition, the B subunit potentiated the response of the 3T3 cells to other mitogens, such as epidermal growth factor, platelet-derived growth factor, and insulin. This synergistic effect indicates that the B subunit does not act identically to any of these growth factors but probably modulates a common effector system crucial for cell proliferation. In distinct contrast, the B subunit inhibited the growth of ras-transformed 3T3 cells as well as rapidly dividing normal 3T3 cells. Thus, the same cells, depending on their state of growth, exhibited a bimodal response to the B subunit. We conclude that endogenous gangliosides may be bimodal regulators of positive and negative signals for cell growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here