z-logo
open-access-imgOpen Access
Localization and comparative nucleotide sequence analysis of the transforming domain in herpes simplex virus DNA containing repetitive genetic elements.
Author(s) -
Clinton Jones,
Jennifer Ortíz,
Raxit J. Jariwalla
Publication year - 1986
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.83.20.7855
Subject(s) - bamhi , biology , microbiology and biotechnology , herpes simplex virus , dna , nucleic acid sequence , gene , ribonucleotide reductase , genetics , virus , protein subunit , restriction enzyme
The 7.5-kilobase BamHI E fragment (BamHI-E) of herpes simplex virus type 2 (HSV-2) DNA (map position 0.533-0.583) encodes the 144-kDa subunit of ribonucleotide reductase and induces the neoplastic transformation of immortalized cell lines. To define the minimal transforming region of BamHI-E, a series of subclones were constructed that spanned the entire fragment. These subclones were assayed for focus formation in Rat-2 cells. Removal of the promoter region from the viral 144-kDa-protein gene left the transforming activity of DNA clones intact. A 481-bp Pst I-Sal I subclone of BamHI-E was capable of inducing focus formation and tumorigenic conversion. The nucleotide sequence of this fragment and the colinear nontransforming region of HSV-1 DNA was determined and compared. Striking differences were detected in the structure and organization of repeated sequence elements. Specifically, transforming HSV-2 DNA contains multiple regions of alternating purines and pyrimidines, G + C-rich sequences that are potential binding sites for transcription factor Sp1, and insertion-like sequence elements that are interrupted by base substitutions in nontransforming HSV-1 DNA. These results define a distinct transforming domain in HSV-2 DNA composed of repetitive elements implicated in gene rearrangement and activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here