
Calcitonin gene-related peptide: functional role in cerebrovascular regulation.
Author(s) -
James McCulloch,
Rolf Uddman,
Tom A. Kingman,
Lars Edvinsson
Publication year - 1986
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.83.15.5731
Subject(s) - calcitonin gene related peptide , medicine , cerebral arteries , endocrinology , trigeminal nerve , chemistry , vasodilation , trigeminal ganglion , calcitonin , anatomy , vasoconstriction , neuropeptide , biology , receptor , neuroscience , sensory system
Distribution studies disclosed that all major cerebral arteries and cortical arterioles of the cat were invested with fine varicose nerve fibers that contained calcitonin gene-related peptide (CGRP)-like immunoreactivity; the trigeminal ganglia likewise contained CGRP immunoreactivity. Sequential immunostaining with antibodies to CGRP and to substance P (SP) revealed identical distributions of these two peptides in trigeminal ganglia and cerebrovascular nerve fibers, suggesting that CGRP and SP are colocalized in these nerves. CGRP completely disappeared from ipsilateral blood vessels after unilateral section of the trigeminal nerve. Exogenous CGRP was a potent relaxant of feline middle cerebral arteries in vitro (maximum relaxation, 10.5 +/- 1.5 mN; concentration eliciting half-maximal response, 9.6 +/- 1.3 nM). Perivascular microapplication of CGRP to individual cortical arterioles of chloralose-anesthetized cats provoked dose-dependent dilatations (maximum increase in diameter, 38 +/- 5%; concentration eliciting half-maximal response, approximately equal to 3 nM). CGRP was significantly more potent than SP as a cerebrovascular dilator, both in vitro and in situ. Chronic division of the ipsilateral trigeminal nerve in cats did not modify the magnitude of arteriolar responses to perivascular microapplication of either vasoconstrictor or vasodilator agents, but the duration of vasoconstrictor responses to norepinephrine (0.1 mM) or alkaline solutions (pH 7.6) was significantly increased. The cerebrovascular trigeminal neuronal system, in which CGRP is the most potent vasoactive constituent, may participate in a reflex or local response to excessive cerebral vasoconstriction that restores normal vascular diameter.