z-logo
open-access-imgOpen Access
Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid.
Author(s) -
Jon D. Levine,
Diep Lam,
Yetunde O. Taiwo,
Paul Donatoni,
Edward J. Goetzl
Publication year - 1986
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.83.14.5331
Subject(s) - hyperalgesia , arachidonic acid , chemistry , lipoxygenase , cyclooxygenase , leukotriene b4 , nociception , pharmacology , prostaglandin e2 , prostaglandin e , prostaglandin , biochemistry , receptor , inflammation , immunology , medicine , enzyme
Induction of hyperalgesia by leukotriene B4 (LTB4), a potent chemotactic factor for polymorphonuclear leukocytes (PMNLs), depends on the generation by cutaneous PMNLs of mediators that are probably derived from the 15-lipoxygenation of arachidonic acid. The capacity of dihydroxyeicosatetraenoic acid (diHETE) products of the 15-lipoxygenation of arachidonic acid in PMNL to elicit hyperalgesia was evaluated by assessing the effects of intradermal injection of synthetic diHETEs on the pressure nociceptive threshold in rats. (8R,15S)-Dihydroxyeicosa-(5E-9,11,13Z)-tetraenoic acid [(8R,15S)-diHETE] produced a dose-dependent hyperalgesia, as measured by decrease in threshold for paw withdrawal. The isomer (8S,15S)-diHETE antagonized in a dose-dependent manner this hyperalgesia due to (8R,15S)-diHETE but did not suppress prostaglandin E2-induced hyperalgesia. (8S,15S)-DiHETE produced a dose-dependent hypoalgesia, as reflected by an increase in nociceptive threshold, suggesting a contribution of endogenous (8R,15S)-diHETE to normal nociceptive threshold. The hypoalgesic effect of (8S,15S)-diHETE was blocked by corticosteroids but not by the cyclooxygenase inhibitor indomethacin. Neither (8R,15S)-dihydroxyeicosa-(5,15E-9,11Z)-tetraenoic acid nor (8R,15S)-dihydroxyeicosa-(5,11E-9,13Z)-tetraenoic acid exhibited any hyperalgesic or hypoalgesic activity. The stereospecificity of the effect of (8R,15S)-diHETE suggests that the induction of hyperalgesia is a receptor-dependent phenomenon and that (8S,15S)-diHETE may be an effective receptor-directed antagonist. The (8R,15S)-diHETE and (8S,15S)-diHETE from PMNL, keratinocytes, and other epithelial cells may modulate normal primary afferent function and contribute to inflammatory hyperalgesia.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here