z-logo
open-access-imgOpen Access
Stereochemical studies of a selenium-containing hydrogenase from Methanococcus vannielii: determination of the absolute configuration of C-5 chirally labeled dihydro-8-hydroxy-5-deazaflavin cofactor.
Author(s) -
Shigeko Yamazaki,
Lin Tsai,
Thressa C. Stadtman,
Tadashi Teshima,
Akira Nakaji,
Tetsuo Shiba
Publication year - 1985
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.82.5.1364
Subject(s) - hydrogenase , cofactor , selenium , chemistry , stereochemistry , methanococcus , steric effects , molecule , hydrogen , enzyme , biochemistry , organic chemistry , escherichia coli , gene
Reduction of 7,8-didemethyl-8-hydroxy-[5-2H]-5-deazariboflavin by the selenium-containing hydrogenase from Methanococcus vannielii gave a C-5 chirally labeled 1,5-dihydro derivative. The absolute configuration of the chiral label was shown to be (R) by comparison of the chemically degraded product with authentic samples of known absolute configurations. Therefore, the steric course of the enzymic reactions involving the 8-hydroxy-5-deazaflavin cofactor can be defined as follows: (a) reduction occurs on the si face of the 5-deazaflavin molecule; (b) oxidation proceeds by the abstraction of the pro-S hydrogen at C-5 of the 1,5-dihydro-5-deazaflavin. Thus, the selenium-containing hydrogenase and 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from M. vannielii are si face specific.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here