Thyroid hormones increase Na+-H+ exchange activity in renal brush border membranes.
Author(s) -
James L. Kinsella,
Bertram Sacktor
Publication year - 1985
Publication title -
proceedings of the national academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.82.11.3606
Subject(s) - vesicle , endocrinology , medicine , chemistry , brush border , diiodotyrosine , thyroid , reabsorption , epithelial polarity , triiodothyronine , amiloride , hormone , apical membrane , membrane , kidney , sodium , biochemistry , biology , organic chemistry
Na+-H+ exchange activity, i.e., amiloride-sensitive Na+ and H+ flux, in renal proximal tubule brush border (luminal) membrane vesicles was increased in the hyperthyroid rat and decreased in the hypothyroid rat, relative to the euthyroid animal. A positive correlation was found between Na+-H+ exchange activity and serum concentrations of thyroxine (T4) and triiodothyronine (T3). The thyroid status of the animal did not alter amiloride-insensitive Na+ uptake. The rate of passive pH gradient dissipation was higher in membrane vesicles from hyperthyroid rats compared to the rate in vesicles from hypothyroid animals, a result which would tend to limit the increase in Na+ uptake in vesicles from hyperthyroid animals. Na+-dependent phosphate uptake was increased in membrane vesicles from hyperthyroid rats; Na+-dependent D-glucose and L-proline uptakes were not changed by the thyroid status of the animal. The effect of thyroid hormones in increasing the uptake of Na+ in the brush border membrane vesicle is consistent with the action of the hormones in enhancing renal Na+ reabsorption. Further, the regulation of transtubular Na+ flux has now been shown to be concomitant with modulation of the entry of Na+ into the tubular cell across its luminal membrane, mediated by the exchange reaction, and with the previously reported control of the pumping of Na+ out of the cell across its basolateral membrane, mediated by the Na+,K+-ATPase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom