z-logo
open-access-imgOpen Access
Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction?
Author(s) -
Charles Edwards,
Vladimı́r Doležal,
Stanislav Tuček,
Hana Zemková,
F. Vyskočil
Publication year - 1985
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.82.10.3514
Subject(s) - acetylcholine , neuromuscular junction , vesicle , free nerve ending , biophysics , anatomy , chemistry , biology , endocrinology , biochemistry , membrane , neuroscience
Experiments were performed to investigate the effects on the spontaneous, nonquantal release of acetylcholine (AcCho) from motor nerve terminals of substances known to inhibit the AcCho transport system present in cholinergic synaptic vesicles. In mouse diaphragms, the hyperpolarization normally produced by d-tubocurarine in the endplate area of muscle fibers that had been treated by an anticholinesterase was partly or completely blocked by 2-(4-phenylpiperidino)cyclohexanol (AH5183, 0.1-1 microM), quinacrine (0.1 microM), and tetraphenylborate (1 microM). Since the sensitivity of the subsynaptic area to AcCho was not changed, the block of the hyperpolarizing action of d-tubocurarine indicated in inhibition of the spontaneous, nonquantal release of AcCho. This was confirmed in experiments on rat diaphragm using direct radioenzymatic measurement of the AcCho released into the incubation medium. The release of AcCho from the innervated diaphragm was decreased by about 50% in the presence of AH5183 (0.01-1 microM) and by 42% in the presence of quinacrine (0.1-1 microM). The AcCho released was presumably neural, since the release of AcCho from 4-day denervated diaphragms was not diminished by either AH5183 or quinacrine. The results indicate that the spontaneous release of AcCho from the motor nerve terminals is highly sensitive to low concentrations of specific inhibitors and is probably mediated by a carrier. It is proposed that spontaneous release is due to the incorporation into the membrane of the nerve terminal during exocytosis of the vesicular transport system responsible for moving AcCho into the vesicle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here