Open Access
Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose.
Author(s) -
Sándor Pongor,
Peter Ulrich,
F. A. Bencsath,
Anthony Cerami
Publication year - 1984
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.81.9.2684
Subject(s) - chromophore , chemistry , fluorescence , derivatization , maillard reaction , bovine serum albumin , glycation , biochemistry , hydrolysis , lysine , peptide , monosaccharide , amino acid , amine gas treating , chromatography , mass spectrometry , organic chemistry , physics , receptor , quantum mechanics
Proteins exposed to glucose over long periods are known to undergo physicochemical changes including crosslinking and formation of brown fluorescent pigments of poorly characterized structure. Acid hydrolysis of both browned poly(L-lysine) and browned bovine serum albumin is found to release a major fluorescent chromophore, which after alkalinization is extractable into organic solvents and which can be purified by silica gel chromatography. The fluorescence properties of this compound very closely resemble those of the bulk browned polypeptides. By NMR, mass spectroscopy, and chemical derivatization, this compound is assigned the structure 2-(2-furoyl)-4(5)-(2-furanyl)-1H-imidazole (FFI). Confirmation was obtained by independent chemical synthesis from furylglyoxal and ammonia. The incorporation of two peptide-derived amine nitrogens and two glucose residues in FFI strongly suggests that peptide-bound FFI precursors are implicated in the crosslinking of proteins by glucose in vivo. This reaction has potential implications in the understanding of glucose-mediated protein modifications and their role in the complications of diabetes and aging.