Open Access
Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrillar proteins.
Author(s) -
Ryoichi Matsuda,
Dennis Spector,
Richard C. Strohman
Publication year - 1984
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.81.4.1122
Subject(s) - tropomyosin , myosin , myofibril , denervation , troponin , gene isoform , myosin light chain kinase , sarcomere , skeletal muscle , myh7 , biology , troponin t , meromyosin , immunoglobulin light chain , troponin i , microbiology and biotechnology , medicine , endocrinology , biochemistry , myocyte , myosin head , antibody , genetics , gene , myocardial infarction
Synthesis patterns of myosin heavy- and light-chain isoforms, tropomyosin and troponin, have been studied in chicken fast muscle denervated at both neonatal and adult stages. Denervated neonatal muscle does not synthesize the adult myosin heavy-chain isoform at the time of denervation, but it does synthesize the adult isoform several months after denervation. Thus, innervation does not appear to be necessary for the normal sequential replacement of embryonic and neonatal myosin heavy chain by the adult variant. Nerve is required, however, for the regulation of tropomyosin and troponin expression. Normally the pectoralis major muscle represses synthesis of both beta-tropomyosin and leg-type troponin T during late embryonic development. After denervation, however, the muscle relaxes its ongoing repression of these proteins and significant amounts of both beta-tropomyosin and leg-type troponin T are synthesized by the muscle. Denervation also results in an altered pattern of myosin light-chain synthesis so that the ratio of fast light-chain 3/fast light-chain 1 decreases. Similar results are found in muscle denervated at the adult stage. In denervated muscle, therefore, synthesis of these myofibrillar proteins is not coordinated: ongoing isoform shifts proceed to express an adult pattern of myosin heavy chain while tropomyosin, troponin, and myosin light-chain patterns appear to revert to embryonic configurations.