
Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence.
Author(s) -
Yashpal S. Kanwar,
Lionel J. Rosenzweig,
Alfred Linker,
Michael L. Jakubowski
Publication year - 1983
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.80.8.2272
Subject(s) - diabetic nephropathy , glomerular basement membrane , extracellular matrix , renal glomerulus , medicine , extracellular , endocrinology , diabetes mellitus , chemistry , renal function , proteoglycan , basement membrane , kidney , biochemistry , biology , glomerulonephritis , microbiology and biotechnology
The experimental model of streptozotocin-induced diabetes in rats was utilized to determine the biosynthetic and biochemical alterations in the proteoglycans of the glomerular extracellular matrices (glomerular basement membrane and mesangial matrix) in diabetic nephropathy. Isolated kidneys from diabetic and control groups of animals were radiolabeled in an organ perfusion apparatus with [35S]sulfate of high specific activity (greater than 1,200 Ci/mmol; 1 Ci = 3.7 x 10(10) Bq) and processed for electron microscopic autoradiography, and the proteoglycans of the glomerular extracellular matrices were characterized. The results indicate that [35S]sulfate incorporation into glomerular extracellular matrices of diabetic animals was 30-40% less than that of the control group; however, no differences in the biochemical properties of the de novo synthesized proteoglycans from either group were observed. The relevance of the decreased de novo synthesis of sulfated proteoglycans of glomerular extracellular matrices is discussed in terms of increased glomerular permeability to plasma proteins and reduction in the glomerular filtration rate.