z-logo
open-access-imgOpen Access
Unwinding associated with synapsis of DNA molecules by recA protein.
Author(s) -
Anna M. Wu,
Marco Bianchi,
Chandan Dasgupta,
Charles M. Radding
Publication year - 1983
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.80.5.1256
Subject(s) - synapsis , dna , dna ligase , circular bacterial chromosome , biology , microbiology and biotechnology , dna clamp , base pair , biophysics , homologous chromosome , biochemistry , rna , gene , reverse transcriptase
In the presence of adenosine 5'-[gamma-thio]triphosphate, a nonhydrolyzable analog of ATP, Escherichia coli recA protein extensively unwinds duplex DNA in a reaction that is strongly stimulated by either homologous or heterologous single-stranded DNA [Cunningham, R.P., Shibata, T., DasGupta, C. & Radding, C.M. (1979) Nature (London) 281, 191-195]. In the presence of ATP and homologous circular single-stranded DNA, recA protein also unwinds circular duplex DNA that is nicked at a heterologous site. When DNA ligase seals this nick, the product is a highly negatively superhelical molecule that can be relaxed by E. coli topoisomerase I. This unwinding requires a high degree of homology since phi X174 single-stranded DNA does not serve as a cofactor in the unwinding of G4 DNA, even though these molecules are 70% homologous. Like synapsis itself, and unlike strand exchange which follows synapsis, unwinding is sensitive to inhibition by ADP. Because recA protein unwinds duplex DNA when neither the single-stranded DNA nor the duplex DNA has a free end in the region of homology, unwinding can be initiated or mediated by a synaptic structure that differs from that of a simple D loop. The paired circular single strand in the synaptic structure behaves like one strand of an under-wound helix because E. coli topoisomerase I can interwind it with its complement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here