
Unwinding associated with synapsis of DNA molecules by recA protein.
Author(s) -
Anna M. Wu,
Marco Bianchi,
Chandan Dasgupta,
Charles M. Radding
Publication year - 1983
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.80.5.1256
Subject(s) - synapsis , dna , dna ligase , circular bacterial chromosome , biology , microbiology and biotechnology , dna clamp , base pair , biophysics , homologous chromosome , biochemistry , rna , gene , reverse transcriptase
In the presence of adenosine 5'-[gamma-thio]triphosphate, a nonhydrolyzable analog of ATP, Escherichia coli recA protein extensively unwinds duplex DNA in a reaction that is strongly stimulated by either homologous or heterologous single-stranded DNA [Cunningham, R.P., Shibata, T., DasGupta, C. & Radding, C.M. (1979) Nature (London) 281, 191-195]. In the presence of ATP and homologous circular single-stranded DNA, recA protein also unwinds circular duplex DNA that is nicked at a heterologous site. When DNA ligase seals this nick, the product is a highly negatively superhelical molecule that can be relaxed by E. coli topoisomerase I. This unwinding requires a high degree of homology since phi X174 single-stranded DNA does not serve as a cofactor in the unwinding of G4 DNA, even though these molecules are 70% homologous. Like synapsis itself, and unlike strand exchange which follows synapsis, unwinding is sensitive to inhibition by ADP. Because recA protein unwinds duplex DNA when neither the single-stranded DNA nor the duplex DNA has a free end in the region of homology, unwinding can be initiated or mediated by a synaptic structure that differs from that of a simple D loop. The paired circular single strand in the synaptic structure behaves like one strand of an under-wound helix because E. coli topoisomerase I can interwind it with its complement.