z-logo
open-access-imgOpen Access
Nucleotide-stimulated proteolysis of histone H1.
Author(s) -
Carol S. Surowy,
Nathan A. Berger
Publication year - 1983
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.80.18.5510
Subject(s) - proteolysis , adenosine , biochemistry , adenosine triphosphate , microbiology and biotechnology , chemistry , nucleotide , biology , histone , enzyme , dna , gene
We have identified a proteolytic system that selectively degrades histone H1 in normal human lymphocytes. Treatment of permeabilized human lymphocytes with a series of nucleotides produced a marked decrease in their histone H1 content compared to untreated cells. The nucleotide-stimulated process was selective for histone H1 because gel electrophoresis showed that almost all other lymphocyte protein bands remained constant while histone H1 disappeared. The elimination of histone H1 appears to be the result of proteolysis by a trypsin-like enzyme because it was inhibited by phenylmethylsulfonyl fluoride, antipain, soybean trypsin inhibitor, and diisopropyl fluorophosphate. Proteolysis was stimulated by P1,P4-di(adenosine-5') tetraphosphate, P1,P3-di(adenosine-5') triphosphate, P1,P5-di(adenosine-5') pentaphosphate, adenosine 5'-tetraphosphate, ATP, adenosine 5'-[alpha, beta-methylene]triphosphate, adenosine 5'-[beta, gamma-methylene]triphosphate, ADP, CTP, GTP, UTP, dATP, or pyrophosphate, whereas AMP, adenosine, adenosine diphosphoribose, NAD+, cAMP, or sodium phosphate did not show this stimulation of proteolysis. ATP, [alpha, beta-methylene]ATP, [beta, gamma-methylene]ATP, and pyrophosphate all stimulated proteolysis, suggesting that a pyrophosphate linkage was necessary for this process. Thus, resting human lymphocytes contain a trypsin-like protease that is stimulated by nucleotides or pyrophosphate to selectively degrade histone H1.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here