
In vitro assembly of a pre-messenger ribonucleoprotein.
Author(s) -
Ioannis V. Economidis,
Thoru Pederson
Publication year - 1983
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.80.14.4296
Subject(s) - rna , ribonucleoprotein , microbiology and biotechnology , ribonucleoprotein particle , biology , messenger rna , transcription (linguistics) , rna splicing , post transcriptional modification , polymerase , precursor mrna , rna dependent rna polymerase , heterogeneous ribonucleoprotein particle , in vitro , dna , biochemistry , gene , linguistics , philosophy
Transcription of the Bal I E restriction fragment of adenovirus DNA by RNA polymerase II in a HeLa cell extract produces a RNA transcript 1,712 nucleotides in length. This transcript contains the first two elements of the tripartite leader that, in vivo, is spliced onto the late mRNAs. We have found that this adenovirus 2 transcript forms a specific ribonucleoprotein complex (RNP) in this in vitro system. The RNP particle sediments in sucrose gradients as a monodisperse peak at 50 S and has a buoyant density of 1.34 g/cm3 in Cs2SO4, indicating the same 4:1 protein/RNA composition as native nuclear RNPs that contain pre-mRNA sequences (hnRNP). Moreover, the in vitro-assembled RNP is resistant to concentrations of NaCl that are known to dissociate nonspecific RNA-protein complexes. The adenovirus 2 transcript is precipitated by a monoclonal antibody for hnRNP core proteins. In addition, RNA-protein crosslinking of [alpha-32P]UTP-labeled transcript/RNP complexes reveals that the major proteins in contact with the RNA are the Mr 32,500-41,500 species known to be associated with hnRNA in vivo. These results demonstrate the in vitro assembly of a specific RNA polymerase II transcript into RNP. Moreover, because the 1,712-nucleotide adenovirus 2 transcript lacks poly(A) addition sites and because the leader sequences are not spliced appreciably in this in vitro system, it follows that RNP formation requires neither polyadenylylation nor splicing, nor is it sufficient to cause the latter.