
Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog.
Author(s) -
Alexander Wlodawer,
Maria Miller,
L. Sjölin
Publication year - 1983
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.80.12.3628
Subject(s) - vanadate , chemistry , crystallography , hydrogen bond , rnase p , neutron diffraction , transition state analog , stereochemistry , active site , inorganic chemistry , molecule , biochemistry , rna , organic chemistry , enzyme , crystal structure , gene
A complex of RNase A with a transition-state analog, uridine vanadate, has been studied by a combination of neutron and x-ray diffraction. The vanadium atom occupies the center of a distorted trigonal bipyramid, with the ribose oxygen O2' at the apical position. Contrary to expectations based on the straightforward interpretation of the known in-line mechanism of action of RNase, nitrogen NE2 of histidine-12 was found to form a hydrogen bond to the equatorial oxygen O8, while nitrogen NZ of lysine-41 makes a clear hydrogen bond to the apical oxygen O2'. Nitrogen ND1 of histidine-119 appears to be within a hydrogen-bond distance of the other apical oxygen, O7. Two other hydrogen bonds between the vanadate and the protein are made by nitrogen NE2 of glutamine-11 and by the amide nitrogen of phenylalanine-120. The observed geometry of the complex may necessitate reinterpretation of the mechanism of action of RNase.