
Characterization of the Mr difference between secreted murine fourth component of complement and the major plasma form: evidence for carboxyl-terminal cleavage of the alpha chain.
Author(s) -
David R. Karp,
Donald C. Shreffler,
John P. Atkinson
Publication year - 1982
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.79.21.6666
Subject(s) - alpha chain , biochemistry , in vivo , in vitro , chemistry , alpha (finance) , cleavage (geology) , autolysis (biology) , microbiology and biotechnology , stereochemistry , biology , enzyme , medicine , paleontology , construct validity , receptor , nursing , fracture (geology) , patient satisfaction
The alpha-chain of murine fourth component of complement (C4) secreted by cells in vitro and in vivo has a Mr that is larger by approximately equal to 4,000 than that of the alpha-chain of the principal form of C4 in plasma. By using in vivo labeling of C4 with [35S]methionine, C4 was shown to be first synthesized with the higher Mr ("secreted") alpha-chain, which was then quickly processed (t1/2 approximately equal to 1 hr) extracellularly to the mature ("plasma") C4 possessing the lower Mr alpha-chain. Both forms of C4 were functional as assayed by the ability of their alpha-chains to be cleaved by the protease C1, to bind methylamine, and to undergo denaturation-dependent autolysis. When secreted C4 and plasma C4 were activated to C4b, the Mr difference of 4,000 was maintained in the alpha'-chains. The Mr difference was localized to the carboxyl-terminal autolytic fragment of the alpha-chain and was unaffected by the removal of carbohydrate. C4 from resident peritoneal macrophage cultures could be converted to the plasma form by incubation with heparin/plasma. This conversion could be blocked by EDTA or 1,10-phenanthroline. These data suggest that an enzyme, presumably a neutral proteinase present in mouse plasma, cleaves the carboxyl terminus of newly synthesized C4 alpha-chains, thereby creating the major form of C4 in plasma.