z-logo
open-access-imgOpen Access
Characterization of leucine side-chain reorientation in collagen-fibrils by solid-state 2H NMR.
Author(s) -
Lynne S. Batchelder,
C. E. Sullivan,
Lynn W. Jelinski,
Dennis A. Torchia
Publication year - 1982
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.79.2.386
Subject(s) - side chain , chemistry , crystallography , fibril , leucine , nuclear magnetic resonance spectroscopy , stereochemistry , nmr spectra database , amino acid , spectral line , biochemistry , physics , organic chemistry , polymer , astronomy
We have used 2H quadrupole-echo NMR spectroscopy to study the molecular dynamics of the leucine side chain in collagen fibrils labeled with [2H10]leucine. X-ray crystallographic studies of leucine and small leucyl-containing peptides and proteins [Benedetti, C. (1977) in Proceedings of the Fifth American Peptides Symposium, eds, Goodman, M. & Meienhofer, J. (Wiley, New York), pp. 257--274; Janin, J., Wodak, S., Levitt, M. & Maigret, B. (1978) J. Mol. Biol. 125, 357--386] show that the amino acid side chain exists predominantly in only two of the nine possible conformations. 2H NMR spectra of polycrystalline D,L [2H10]leucine obtained from -45 degrees C to +100 degrees C showed that interconversion of the two conformations did not take place on the 2H NMR timescale in this temperature range. In contrast, experimental lineshapes observed for [2H10]leucine-labeled collagen fibrils from -85 degrees C to +30 degrees C were simulated by using a model in which the side chain hops at various rates between the two predominant conformations found by the x-ray studies. A small difference between calculated and observed linewidths above the freezing point of water can be accounted for by backbone reorientation or by the presence of a small percentage of other side-chain conformations. Thus, these results provide strong evidence that the two predominant x-ray conformations not only exist in the fibrils as the preferred orientations but interconvert at rates that are proportional to temperature over the range - 85 degrees C to +30 degrees C. These observations concur with previous NNR studies of collagen fibrils that demonstrated a mobile contact region between collagen molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here