z-logo
open-access-imgOpen Access
Isolation and function of spinach leaf β-ketoacyl-[acyl-carrier-protein] synthases
Author(s) -
Takashi Shimakata,
P.K. Stumpf
Publication year - 1982
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.79.19.5808
Subject(s) - acyl carrier protein , fatty acid synthase , spinach , acyltransferase , atp synthase , acyltransferases , biochemistry , enzyme , cerulenin , substrate (aquarium) , chemistry , biology , fatty acid , stereochemistry , biosynthesis , ecology
Crude spinach leaf extract readily forms the stearoyl derivative of acyl-carrier-protein (ACP) when acetyl-ACP and malonyl-ACP are incubated together. Palmitoyl-ACP is also elongated by malonyl-ACP to stearoyl-ACP. When β-ketoacyl-ACP synthase {3-oxoacyl-[ACP] synthase; acyl-[ACP]:malonyl-[ACP]C -acyltransferase (decarboxylating), EC 2.3.1.41} is purified with decanoyl-ACP as the assay substrate, palmitoyl-ACP elongation activity is lost. When palmitoyl-ACP is the assay substrate, another protein is isolated that specifically elongates palmitoyl-ACP to β-ketostearoyl-ACP but has no activity towards decanoyl-ACP. The first protein is designated β-ketoacyl-ACP synthase I and participates in the conversion of acetyl-ACP to palmitoyl-ACP, whereas the second protein is designated β-ketoacyl-ACP synthase II, and its substrate specificity is highly restricted to myristoyl-ACP and palmitoyl-ACP. The purification of synthase II is described, and its activity is compared to synthase I. Reconstitution experiments with the highly purified nonassociated enzymes in fatty acid synthesis plus synthases I and II clearly demonstrate the roles of these two proteins in fatty acid synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here