
Three-dimensional structural model of eubacterial 5S RNA that has functional implications.
Author(s) -
Tomas Pieler,
Volker A. Erdmann
Publication year - 1982
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.79.15.4599
Subject(s) - rna , 5s ribosomal rna , ribosomal rna , escherichia coli , biology , nuclease , 5.8s ribosomal rna , ribosomal protein , non coding rna , genetics , biochemistry , dna , ribosome , gene
Escherichia coli 5S RNA and its specific protein complexes were hydrolyzed with the single-strand-specific nuclease S1. Based on the results, a tertiary structural model for E. coli 5S RNA is proposed in which ribosomal proteins E-L5, E-L18, and E-L25 influence the conformation of the RNA. This may be of significance for ribosomal function. Comparison of the proposed E. coli 5S RNA structure with those of 18 other prokaryotic 5S RNAs led to a generalized eubacterial 5S RNA tertiary structure in which the majority of the conserved nucleotides are in non-base-paired regions and several conserved "looped-out" adenines (in E. coli, adenines -52, -53, -57, -58, and -66) are implied to be important for protein recognition or interaction or both.