
Changes in the activity and properties of trehalase during early germination of yeast ascospores: Correlation with trehalose breakdown as studied by in vivo 13 C NMR
Author(s) -
Johan M. Thevelein,
Jan A. den Hollander,
Robert G. Shulman
Publication year - 1982
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.79.11.3503
Subject(s) - trehalose , trehalase , germination , biochemistry , spore germination , glycogen , chemistry , biology , botany
The regulation of trehalose breakdown during dormancy and the induction of germination in yeast ascospores was studied both byin vivo high-resolution NMR spectroscopy andin vitro assays of trehalase activity. Natural-abundance13 C NMR spectra taken during the induction of germination with glucose and phosphate showed a rapid breakdown of part of the trehalose content. The presence of both glucose and phosphate was important for maximal trehalose breakdown. The13 C NMR spectra showed that the externally added glucose and the internal trehalose were metabolized mainly to glycerol and ethanol. Under these conditions of nitrogen deprivation, full germination is not possible and trehalose breakdown stopped after ≈1 hr. At this moment resynthesis of trehalose occurred while glycerol and ethanol production from the exogenous glucose continued. In complex media where full spore germination can occur, trehalose breakdown was more pronounced. Measurements of trehalase activity in spore extracts made after addition of varying amounts of glucose and phosphate to the spores revealed a sudden 10-fold increase in the activity of trehalase, within the first minutes of spore germination. The activation was transient: after reaching a maximum between 5 and 10 min, the activity declined back to low values during the next hours. The increase in trehalase activity was not inhibited by cycloheximide or by anaerobic conditions. The decline in trehalase activity that occurred after the initial activation could be correlated with the extent of trehalose breakdown as measured by13 C NMR. In addition to the increase in trehalase activity, differences in the control properties were found between the enzymes from dormant and germinating spores. Trehalase from dormant spores was strongly inhibited by ATP at a concentration of ≈0.5 mM, which corresponds with the ATP concentration found in dormant spores. On the other hand, trehalase from germinating spores was not inhibited by ATP up to the much higher ATP concentrations that are found in germinating spores. It is suggested that the low activity and the stringent ATP feedback inhibition of trehalase from dormant spores are responsible for the very slow mobilization of the huge amount of trehalose in dormant spores. Therefore, dormancy seems to be caused primarily by extreme curtailment of the energy production within the spore at one selective and primary point. The switch towards high activity and low ATP inhibition upon induction of germination is suggested to be responsible for the breaking of dormancy and for the rapid breakdown of trehalose that occurs during the initial phase of germination.