z-logo
open-access-imgOpen Access
Possible role of ceramide in defining structure and function of membrane glycolipids.
Author(s) -
Reiji Kannagi,
Edward Nudelman,
Senitiroh Hakomori
Publication year - 1982
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.79.11.3470
Subject(s) - ceramide , glycolipid , glycosphingolipid , biochemistry , biology , fatty acid , carbohydrate , sphingolipid , chemistry , stereochemistry , apoptosis
A possible role of ceramide in defining the carbohydrate structure of glycolipids and the expression of glycolipid function has been proposed, on the basis of our finding that the ceramide composition of "lacto-series" glycosphingolipid isolated from human erythrocytes shows a remarkable correlation with the terminal carbohydrate structure: (i) The ceramides of three glycosphingolipids with Lex (or x) determinant [Gal beta 1 leads to 4(Fuc alpha 1 leads to 3) GlcNAc] had almost exclusively 16:0 fatty acid; in contrast, the ceramide of its positional isomer H determinant had mainly 20--24:0 fatty acids. (ii) The ceramide of two glycosphingolipids with NeuAc alpha 2 leads to 6GAL structure was predominantly of 16:0 fatty acid, in contrast to that of its positional isomer NeuAc alpha 2 leads to 3Gal residue, in which the ceramide had 20--24:0 fatty acids. These results, together with our previous observation that ceramide composition of mouse lymphoma and myelocytic leukemia MI cells affects their antigenicity, suggest that ceramide structure may define the organization of glycosyltransferase for synthesis of the carbohydrate determinants and may affect the organization and orientation of the carbohydrate chain in membranes, eliciting or suppressing the reactivity to its ligand. Because these glycolipids with Lex and NeuAc alpha 2 leads to 6Gal structures are developmentally regulated and are highly expressed in certain tumors, ceramide composition may affect development, differentiation, and oncogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here