
Amplification of the metallothionein-I gene in cadmium-resistant mouse cells.
Author(s) -
Larry R. Beach,
Richard D. Palmiter
Publication year - 1981
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.78.4.2110
Subject(s) - metallothionein , microbiology and biotechnology , gene , biology , complementary dna , gene expression , cadmium , transcription (linguistics) , chemistry , biochemistry , linguistics , philosophy , organic chemistry
Friend leukemia cells resistant to cadmium toxicity were selected. More than 70% of total cysteine incorporation in these cells was into the metal-binding protein, metallothionein. We used cDNA and genomic DNA clones containing the metallothionein-I gene to measure the concentration of its mRNA, the rate of gene transcription, and the number of genes. On a per cell basis, optimally induced, cadmium-resistant cells have a 14-fold more metallothionein-I mRNA, a 6-fold higher rate of metallothionein-I gene transcription, and 6-fold more metallothionein-I genes than do nonresistant cells. Metaphase spreads revealed that the resistant cells are nearly tetraploid and contain, on the average, three very small chromosomes that are absent from non-resistant Friend cells.