
Incorporation into DNA of the base analog 2-aminopurine by the Epstein-Barr virus-induced DNA polymerase in vivo and in vitro.
Author(s) -
Dario Grossberger,
Wendy Clough
Publication year - 1981
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.78.12.7271
Subject(s) - dna polymerase , polymerase , dna polymerase ii , biology , microbiology and biotechnology , dna clamp , dna , nucleotide , dna polymerase i , biochemistry , dna replication , rna , reverse transcriptase , gene
The Epstein-Barr virus (EBV)-induced intracellular DNA polymerase was assayed in vitro for the ability to utilize the mutagenic nucleotide analog 2-aminopurine deoxyribose triphosphate (d2apTP), incorporating it as the corresponding monophosphate into DNA or poly[d)(A-T)] template. Bacteriophage T4, lymphocyte alpha, and the EBV particle-associated DNA polymerases were assayed simultaneously for direct comparison. Unlike these three polymerases, which were capable of distinguishing between d2apTP and dATP with a strong preference for the latter, the EBV-induced DNA polymerase only weakly distinguished between dATP and d2apTP and incorporated substantial amounts of d2apTP into template. Detergent-treated lymphocyte nuclei undergoing a high level of EBV DNA synthesis were shown to incorporate the 2-aminopurine analog of dATP into viral DNA. The relative inability of the EBV-induced DNA polymerase to distinguish between the two purine nucleotides reported here is consistent with previous reports on the ready incorporation of other nucleotide analogs into DNA polymerases induced by other herpesviruses. Because most antiherpes agents currently in use or under study are nucleotide analogs, the viral mutagenic properties of these drugs should be examined.