
Conformational transition in the myosin hinge upon activation of muscle.
Author(s) -
Hitoshi Ueno,
William F. Harrington
Publication year - 1981
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.78.10.6101
Subject(s) - myosin , proteolysis , biophysics , chemistry , hinge , conformational change , actin , cleavage (geology) , heavy meromyosin , myofibril , myosin head , adenosine triphosphate , biochemistry , crystallography , myosin light chain kinase , stereochemistry , enzyme , biology , mechanical engineering , paleontology , fracture (geology) , engineering
We have determined the rates of chymotryptic proteolysis of the myosin hinge region in glycerinated rabbit psoas fibers and myofibrils in in rigor-inducing, activating, and relaxing buffers. The time course of formation of light meromyosin (LMM) provides a specific probe for cleavage within the hinge domain. In rigor-inducing and relaxing buffers proteolysis within the hinge is depressed, but on activation LMM is formed at a markedly increased rate, which is dependent on the concentration of MgATP. Peptide bond cleavage occurs at four widely separated sites spanning the length of the hinge domain. Only a trivial amount of proteolysis occurs at the head--rod swivel or within the heavy chain of the head itself (S-1 subunit) in rigor-inducing and relaxing solvents, and we find no significant change on activation. The rate of formation of LMM in rigor-inducing buffer is unchanged by addition of MgADP, Pi, or magnesium adenosine 5'-[beta, gamma-imido]triphosphate or in activating solvent at zero overlap between thick and thin filaments. These results provide evidence for a conformational (helix--coil) transition within the myosin hinge upon activation of skeletal muscle.