
Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca2+-activated ATPase.
Author(s) -
Winfried Hoffmann,
M.G. Sarzała,
D. Chapman
Publication year - 1979
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.76.8.3860
Subject(s) - arrhenius plot , chemistry , endoplasmic reticulum , atpase , activation energy , arrhenius equation , atp hydrolysis , biophysics , crystallography , enzyme , biochemistry , biology
The rotational motion of the sarcoplasmic reticulum Ca2+-activated ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been investigated by measuring the decay of laser flash-induced dichroism with the covalently attached triplet probe eosin isothiocyanate. The Arrhenius plot for rotational mobility indicates two discontinuities at approximately 15 degrees C and approximately 35 degrees C. The experimental data are rationalized in terms of a sudden conformeric change in the ATPase at 15 degrees C and a temperature-dependent equilibrium existing between the conformationally altered ATPase and oligomeric forms of it in the temperature range 15-35 degrees C. The enzymatic activity, as indicated by a discontinuity in the Arrhenius plot for the rate of ATP hydrolysis, appears to be sensitive only to the change at 15 degrees C. There is a strong correlation between the activation energy below 15 degrees C for rotational motion (33.6 +/- 2.2 kcal/mol) and enzymatic activity (34 +/- 4 kcal/mol).