
Occurrence of crossed strand-exchange forms in yeast DNA during meiosis.
Author(s) -
Leslie Bell,
Breck Byers
Publication year - 1979
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.76.7.3445
Subject(s) - holliday junction , branch migration , dna , homologous recombination , recombination , biology , genetic recombination , meiosis , restriction enzyme , genetics , agarose gel electrophoresis , microbiology and biotechnology , gel electrophoresis , homology (biology) , gene
The crossed strand-exchange form (Holliday structure, half chiasma) has been predicted as an intermediate in the genetic recombination of eukaryotes. We report here the detection of this form in the yeast plasmid, 2-micron DNA, isolated during meiosis. Physical mapping has previously suggested that two forms of 2-micron DNA arise because of recombination between inverted repeat regions. After appropriate digestion with restriction endonuclease, a crossed strand-exchange form intermediate in this recombination would yield an X-shaped form resistant to loss by branch migration because of nonhomology in sequences flanking the region of homology. We first generated this X-shaped form artificially by reannealing melted restriction fragments of 2-micron DNA. This enabled us to develop a procedure for the physical separation of the X-shaped form by agarose gel electrophoresis. We then used this electrophoretic procedure to isolate a naturally occurring form of identical structure from the 2-micron DNA of meiotic cells. Electron microscopy demonstrated that the exchange junction had the expected configuration of strands and indicated that the junction occurred within the region of homology.