z-logo
open-access-imgOpen Access
Homologous genes for enolase, phosphogluconate dehydrogenase, phosphoglucomutase, and adenylate kinase are syntenic on mouse chromosome 4 and human chromosome 1p
Author(s) -
Peter A. Lalley,
Uta Francke,
John D. Minna
Publication year - 1978
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.75.5.2382
Subject(s) - biology , synteny , genetics , homologous chromosome , gene , chromosome 21 , chromosome 12 , phosphoglucomutase , microbiology and biotechnology , chromosome 19 , chromosome 4 , chromosome , chromosome 3 , chromosome 15 , gene mapping , chromosome 22 , chromosome 7 (human) , enzyme , biochemistry
It is possible to generate interspecific somatic cell hybrids that preferentially segregate mouse chromosomes, thus making possible mapping of mouse genes. Therefore, comparison of the linkage relationships of homologous genes in man and mouse is now possible. Chinese hamster × mouse somatic cell hybrids segregating mouse chromosomes were tested for the expression of mouse enolase (ENO-1; EC 4.2.1.11, McKusick no. 17245), 6-phosphogluconate dehydrogenase [PGD; EC 1.1.1.44, McKusick no. 17220], phosphoglucomutase-2 (PGM-2; EC 2.7.5.1, McKusick no. 17190), and adenylate kinase-2 (AK-2; EC 2.7.4.3, McKusick no. 10302). In man, genes coding for the homologous forms of these enzymes have been assigned to the short arm of human chromosome 1. Analysis of 41 primary, independent, hybrid clones indicated that, in the mouse, ENO-1 and AK-2 are syntenic with PGD and PGM-2 and therefore can be assigned to mouse chromosome 4. In contrast, they were asyntenic with 21 other enzymes including mouse dipeptidase-1 (DIP-1, human PEP-C; EC 3.4.11.* , McKusick no. 17000) assigned to human chromosome arm 1q and mouse chromosome 1. Karyologic analysis confirmed this assignment. These data demonstrate that a large autosomal region (21 map units in the mouse and 51 map units in the human male) has been conserved in the evolution of mouse chromosome 4 and the short arm of human chromosome 1. Identification of such conserved regions will contribute to our understanding of the evolution of the mammalian genome and could suggest gene location by homology mapping.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here