
Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes.
Author(s) -
Fusao Hirata,
Julius Axelrod
Publication year - 1978
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.75.5.2348
Subject(s) - phosphatidylethanolamine , phosphatidylcholine , methyltransferase , biochemistry , membrane , methylation , enzyme , chemistry , cytoplasm , methionine , substrate (aquarium) , biology , phospholipid , dna , amino acid , ecology
The synthesis of phosphatidylcholine from phosphatidylethanolamine is carried out by two methyltransferases in erythrocyte membranes. The first enzyme uses phosphatidylethanolamine as a substrate, requires Mg2+, and has a high affinity for methyl donor, S-adenosyl-L-methionine. The second enzyme methylates phosphatidyl-N-monomethylethanolamine to phosphatidylcholine and has a low affinity for S-adenosyl-L-methionine. The first enzyme is localized on the cytoplasmic side of the membrane and the second enzyme faces the external surface. This asymmetric arrangement of the two enzymes across the membrane makes possible the stepwide methylation of phosphatidylethanolamine localized on the cytoplasmic side and facilitates the rapid transmembrane transfer of the final product, phosphatidylcholine, to the external surface of the membrane. A mechanism for an enzyme-mediated flip-flop of phospholipids from the cytoplasmic to the outer surface of erythrocyte membranes is described.