z-logo
open-access-imgOpen Access
Netropsin-poly(dA-dT) complex in solution: structure and dynamics of antibiotic-free base pair regions and those centered on bound netropsin.
Author(s) -
Dinshaw J. Patel,
Lita L. Canuel
Publication year - 1977
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.74.12.5207
Subject(s) - netropsin , free base , crystallography , nuclear magnetic resonance spectroscopy , chemistry , stereochemistry , base pair , molecule , dna , biochemistry , organic chemistry , salt (chemistry) , minor groove
The biphasic duplex-to-strand transition for the netropsin.poly(dA-dT) complex, phosphate/drug mole ratio (P/D) = 50, has been investigated by high-resolution proton nuclear magnetic resonance (NMR) spectroscopy at the nonexchangeable base and sugar protons in 0.1 M cacodylate solution. The NMR spectral parameters monitor the structure and dynamics of the opening of antibiotic-free base pair regions (55 degrees-65 degrees) and the opening of base regions centered on bound netropsin (90 degrees-100 degrees). The gradual addition of netropsin to poly(dA-dT) results in structural perturbations extending into the antibiotic-free base pair regions that begin to level off above 0.02 antibiotic molecules per polynucleotide phosphate (P/D = 50). The NMR chemical shift parameters at the antibiotic-free base pair regions in the P/D = 50 complex suggest changes in the glycosidic torsion angles of the deoxyadenosine and thymidine residues and less pronounced changes in the base pair overlap geometries. The dissociation rates of the antibiotic-free base pair regions are at least an order of magnitude slower in the P/D = 50 netropsin.poly(dA-dT) complex compared to related parameters for poly(dA-dT) and the P/D = 50 ethidium bromide-poly(dA-dT) complex. There is decreased segmental mobility at the antibiotic-free strand regions in the temperature range (65 degrees-90 degrees) between the two transitions in the biphasic melting curve of the P/D = 50 netropsin-poly(dA-dT) complex. Netropsin stabilizes at least five base pairs, with their center at its binding site.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here