Open Access
Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form.
Author(s) -
Jr Jm Mackenzie,
R A Coleman,
W. R. Briggs,
L. H. Pratt
Publication year - 1975
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.72.3.799
Subject(s) - phytochrome , cytoplasm , oryza sativa , biology , avena , biophysics , etiolation , botany , plastid , intracellular , biochemistry , microbiology and biotechnology , red light , chloroplast , enzyme , gene
The intracellular localization of phytochrome was seen in dark-grown oat (Avena sativa L., cv. Garry) and rice (Oryza sativa L., cv. unknown) shoots after various light treatments using an indirect peroxidase-antiperoxidase antibody labeling method. Phytochrome is generally distributed throughout the cytoplasm in cells of tissue that had not been exposed to light prior to fixation. Within, at most, 8 min after the onset of saturating red irradiation, phytochrome, now present in the far-red-absorbing form, becomes associated with discrete regions of the cell. These regions do not appear to be nuclei, plastids, or mitochondria. After phototransformation back to the red-absorbing form originally present, phytochrome slowly resumes its general distribution. It is possible that this discrete localization of the far-red-absorbing form of phytochrome represents a physiologically significant binding with a receptor site in the cell.