Open Access
Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia
Author(s) -
Renata Kozyraki,
John C. Fyfe,
P Verroust,
Christian Jacobsen,
Alice DautryVarsat,
Jakub Gburek,
Thomas E. Willnow,
Erik Christensen,
Søren K. Moestrup
Publication year - 2001
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.211291398
Subject(s) - endocytic cycle , endocytosis , internalization , reabsorption , transferrin , microbiology and biotechnology , receptor , kidney , medicine , biology , endosome , chemistry , endocrinology , receptor mediated endocytosis , transferrin receptor , biochemistry , intracellular
Cubilin is a 460-kDa protein functioning as an endocytic receptor for intrinsic factor vitamin B(12) complex in the intestine and as a receptor for apolipoprotein A1 and albumin reabsorption in the kidney proximal tubules and the yolk sac. In the present study, we report the identification of cubilin as a novel transferrin (Tf) receptor involved in catabolism of Tf. Consistent with a cubilin-mediated endocytosis of Tf in the kidney, lysosomes of human, dog, and mouse renal proximal tubules strongly accumulate Tf, whereas no Tf is detectable in the endocytic apparatus of the renal tubule epithelium of dogs with deficient surface expression of cubilin. As a consequence, these dogs excrete increased amounts of Tf in the urine. Mice with deficient synthesis of megalin, the putative coreceptor colocalizing with cubilin, also excrete high amounts of Tf and fail to internalize Tf in their proximal tubules. However, in contrast to the dogs with the defective cubilin expression, the megalin-deficient mice accumulate Tf on the luminal cubilin-expressing surface of the proximal tubule epithelium. This observation indicates that megalin deficiency causes failure in internalization of the cubilin-ligand complex. The megalin-dependent, cubilin-mediated endocytosis of Tf and the potential of the receptors thereby to facilitate iron uptake were further confirmed by analyzing the uptake of (125)I- and (59)Fe-labeled Tf in cultured yolk sac cells.