z-logo
open-access-imgOpen Access
Neuroprotective potential of a viral vector system induced by a neurological insult
Author(s) -
Clare R. Ozawa,
Jill J. Ho,
David J. Tsai,
Dora Y. Ho,
Robert M. Sapolsky
Publication year - 2000
Publication title -
proceedings of the national academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.160503997
Subject(s) - transgene , neuroprotection , viral vector , biology , herpes simplex virus , glucocorticoid , vector (molecular biology) , reporter gene , excitotoxicity , endogeny , hippocampal formation , microbiology and biotechnology , neuroscience , virology , immunology , gene expression , virus , programmed cell death , gene , endocrinology , genetics , recombinant dna , apoptosis
Gene transfer into neurons via viral vectors for protection against acute necrotic insults has generated considerable interest. Most studies have used constitutive vector systems, limiting the ability to control transgene expression in a dose-dependent, time-dependent, or reversible manner. We have constructed defective herpes simplex virus vectors designed to be induced by necrotic neurological insults themselves. Such vectors contain a synthetic glucocorticoid-responsive promoter, taking advantage of the almost uniquely high levels of glucocorticoids-adrenal stress steroids-secreted in response to such insults. We observed dose-responsive and steroid-specific induction by endogenous and synthetic glucocorticoids in hippocampal cultures. Induction was likely to be rapid enough to allow transgenic manipulation of relatively early steps in the cascade of necrotic neuron death. The protective potential of such a vector was tested by inclusion of a neuroprotective transgene (the Glut-1 glucose transporter). Induction of this vector by glucocorticoids decreased glutamatergic excitotoxicity in culture. Finally, both exogenous glucocorticoids and excitotoxic seizures induced reporter gene expression driven from a glucocorticoid-responsive herpes simplex virus vector in the hippocampus in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom