z-logo
open-access-imgOpen Access
Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α1,4- N -acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis
Author(s) -
Byung-Taek Kim,
Hiroshi Kitagawa,
Jun’ichi Tamura,
Toshiyuki Saito,
Marion Kusche-Gullberg,
Ulf Lindahl,
Kazuyuki Sugahara
Publication year - 2001
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.131188498
Subject(s) - glycosyltransferase , transferase , heparan sulfate , biochemistry , biosynthesis , gene , gene cluster , biology , enzyme , chemistry , heparin
The tumor suppressors EXT1 and EXT2 are associated with hereditary multiple exostoses and encode bifunctional glycosyltransferases essential for chain polymerization of heparan sulfate (HS) and its analog, heparin (Hep). Three highly homologous EXT-like genes, EXTL1-EXTL3, have been cloned, and EXTL2 is an alpha1,4-GlcNAc transferase I, the key enzyme that initiates the HS/Hep synthesis. In the present study, truncated forms of EXTL1 and EXTL3, lacking the putative NH2-terminal transmembrane and cytoplasmic domains, were transiently expressed in COS-1 cells and found to harbor alpha-GlcNAc transferase activity. EXTL3 used not only N-acetylheparosan oligosaccharides that represent growing HS chains but also GlcAbeta1-3Galbeta1-O-C2H4NH-benzyloxycarbonyl (Cbz), a synthetic substrate for alpha-GlcNAc transferase I that determines and initiates HS/Hep synthesis. In contrast, EXTL1 used only the former acceptor. Neither EXTL1 nor EXTL3 showed any glucuronyltransferase activity as examined with N-acetylheparosan oligosaccharides. Heparitinase I digestion of each transferase-reaction product showed that GlcNAc had been transferred exclusively through an alpha1,4-configuration. Hence, EXTL3 most likely is involved in both chain initiation and elongation, whereas EXTL1 possibly is involved only in the chain elongation of HS and, maybe, Hep as well. Thus, their acceptor specificities of the five family members are overlapping but distinct from each other, except for EXT1 and EXT2 with the same specificity. It now has been clarified that all of the five cloned human EXT gene family proteins harbor glycosyltransferase activities, which probably contribute to the synthesis of HS and Hep.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here