
The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo
Author(s) -
Lei Huang,
Zheng Yan,
Xiaodong Liao,
Yuan Li,
Jie Yang,
Zhugang Wang,
Yong Zuo,
Hidehiko Kawai,
Miriam Shadfan,
Suthakar Ganapathy,
Zhi-Min Yuan
Publication year - 2011
Publication title -
proceedings of the national academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.1102309108
Subject(s) - mdmx , mdm2 , biology , mutant , microbiology and biotechnology , apoptosis , point mutation , cancer research , genetics , gene
There are currently two distinct models proposed to explain why both MDM2 and MDMX are required in p53 control, with a key difference centered on whether these two p53 inhibitors work together or independently. To test these two competing models, we generated knockin mice expressing a point mutation MDMX mutant (C462A) that is defective in MDM2 binding. This approach allowed a targeted disassociation of the MDM2/MDMX heterocomplex without affecting the ability of MDMX to bind to p53, and while leaving the MDM2 protein itself completely untouched. Significantly, Mdmx(C462A/C462A) homozygous mice died at approximately day 9.5 of embryonic development, as the result of a combination of apoptosis and decreased cell proliferation, as shown by TUNEL and BrdU incorporation assays, respectively. Interestingly, even though the MDMX mutant protein abundance was found slightly elevated in the Mdmx(C462A/C462A) homozygous embryos, both the abundance and activity of p53 were markedly increased. A p53-dependent death was demonstrated by the finding that concomitant deletion of p53 completely rescued the embryonic lethality in Mdmx(C462A/C462A) homozygous mice. Our data demonstrate that MDM2 and MDMX function as an integral complex in p53 control, providing insights into the nonredundant nature of the function of MDM2 and MDMX.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom