
HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation
Author(s) -
Marian L. Burr,
Florencia Cano,
Stanislava Svobodova,
Louise H. Boyle,
Jessica M. Boname,
Paul J. Lehner
Publication year - 2011
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.1016229108
Subject(s) - mhc class i , endoplasmic reticulum , ubiquitin ligase , endoplasmic reticulum associated protein degradation , transporter associated with antigen processing , microbiology and biotechnology , ubiquitin , proteasome , major histocompatibility complex , cd74 , biology , cytosol , protein degradation , protein folding , unfolded protein response , chemistry , biochemistry , enzyme , gene
The assembly of MHC class I molecules is governed by stringent endoplasmic reticulum (ER) quality control mechanisms. MHC class I heavy chains that fail to achieve their native conformation in complex with β2-microglobulin (β2m) and peptide are targeted for ER-associated degradation. This requires ubiquitination of the MHC class I heavy chain and its dislocation from the ER to the cytosol for proteasome-mediated degradation, although the cellular machinery involved in this process is unknown. Using an siRNA functional screen in β2m-depleted cells, we identify an essential role for the E3 ligase HRD1 (Synoviolin) together with the E2 ubiquitin-conjugating enzyme UBE2J1 in the ubiquitination and dislocation of misfolded MHC class I heavy chains. HRD1 is also required for the ubiquitination and degradation of the naturally occurring hemochromatosis-associated HFE-C282Y mutant, which is unable to bind β2m. In the absence of HRD1, misfolded HLA-B27 accumulated in cells with a normal MHC class I assembly pathway, and HRD1 depletion prevented the appearance of low levels of cytosolic unfolded MHC I heavy chains. HRD1 and UBE2J1 associate in a complex together with non-β2m bound MHC class I heavy chains, Derlin 1, and p97 and discriminate misfolded MHC class I from conformational MHC I-β2m-peptide heterotrimers. Together these data support a physiological role for HRD1 and UBE2J1 in the homeostatic regulation of MHC class I assembly and expression.