
Altered pain responses in mice lacking α 1E subunit of the voltage-dependent Ca 2+ channel
Author(s) -
Hironao Saegusa,
Takashi Kurihara,
Shuqin Zong,
Osamu Minowa,
An A. Kazuno,
Wenchao Han,
Yoshihisa Matsuda,
Hitomi Yamanaka,
Makoto Osanai,
Tetsuo Noda,
Tsutomu Tanabe
Publication year - 2000
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.100124197
Subject(s) - nociception , alpha (finance) , protein subunit , noxious stimulus , g alpha subunit , chemistry , endocrinology , pharmacology , medicine , biology , neuroscience , biochemistry , gene , receptor , construct validity , nursing , patient satisfaction
alpha(1) subunit of the voltage-dependent Ca(2+) channel is essential for channel function and determines the functional specificity of various channel types. alpha(1E) subunit was originally identified as a neuron-specific one, but the physiological function of the Ca(2+) channel containing this subunit (alpha(1E) Ca(2+) channel) was not clear compared with other types of Ca(2+) channels because of the limited availability of specific blockers. To clarify the physiological roles of the alpha(1E) Ca(2+) channel, we have generated alpha(1E) mutant (alpha(1E)-/-) mice by gene targeting. The lacZ gene was inserted in-frame and used as a marker for alpha(1E) subunit expression. alpha(1E)-/- mice showed reduced spontaneous locomotor activities and signs of timidness, but other general behaviors were apparently normal. As involvement of alpha(1E) in pain transmission was suggested by localization analyses with 5-bromo-4-chloro-3-indolyl beta-d-galactopyranoside staining, we conducted several pain-related behavioral tests using the mutant mice. Although alpha(1E)+/- and alpha(1E)-/- mice exhibited normal pain behaviors against acute mechanical, thermal, and chemical stimuli, they both showed reduced responses to somatic inflammatory pain. alpha(1E)+/- mice showed reduced response to visceral inflammatory pain, whereas alpha(1E)-/- mice showed apparently normal response compared with that of wild-type mice. Furthermore, alpha(1E)-/- mice that had been presensitized with a visceral noxious conditioning stimulus showed increased responses to a somatic inflammatory pain, in marked contrast with the wild-type mice in which long-lasting effects of descending antinociceptive pathway were predominant. These results suggest that the alpha(1E) Ca(2 +) channel controls pain behaviors by both spinal and supraspinal mechanisms.