
In vitro reconstitution and activity of a C/D box methylation guide ribonucleoprotein complex
Author(s) -
Arina D. Omer,
Sonia Ziesche,
H. Alexander Ebhardt,
Patrick P. Dennis
Publication year - 2002
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.082101999
Subject(s) - ribonucleoprotein , small nucleolar rna , rna , biology , methylation , rna methylation , ribosomal rna , pseudouridine , guide rna , biochemistry , sulfolobus solfataricus , transfer rna , microbiology and biotechnology , non coding rna , methyltransferase , gene , archaea , genome , genome editing
The genomes of hyperthermophilic Archaea encode dozens of methylation guide, C/D box small RNAs that guide 2'-O-methylation of ribose to specific sites in rRNA and various tRNAs. The genes encoding the Sulfolobus homologues of eukaryotic proteins that are known to be present in C/D box small nucleolar ribonucleoprotein (snoRNP) complexes were cloned, and the proteins (aFIB, aNOP56, and aL7a) were expressed and purified. The purified proteins along with an in vitro transcript of the Sulfolobus sR1 small RNA were reconstituted in vitro, into an RNP complex. The order of assembly of the three proteins onto the RNA was aL7a, aNOP56, and aFIB. The complex was active in targeting S-adenosyl methionine (SAM)-dependent, site-specific 2'-O-methylation of ribose to a short fragment of ribosomal RNA (rRNA) that was complementary to the D box guide region of the sR1 small RNA. The presence of aFIB was essential for methylation; mutant proteins having amino acid replacements in the SAM-binding motif of aFIB were able to assemble into an RNP complex, but the resulting complexes were defective in methylation activity. These experiments define the minimal number of components and the conditions required to achieve in vitro RNA guide-directed 2'-O-methylation of ribose in a target RNA.