z-logo
open-access-imgOpen Access
Identification of a sequence element directing a protein to nuclear speckles
Author(s) -
Jens Eilbracht,
Marion S. Schmidt-Zachmann
Publication year - 2001
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.071042298
Subject(s) - snrnp , biology , rna splicing , nuclear localization sequence , nuclear export signal , ribonucleoprotein , small nuclear ribonucleoprotein , nucleoplasm , microbiology and biotechnology , spliceosome , cell nucleus , rna , genetics , cytoplasm , gene , nucleolus
SF3b(155) is an essential spliceosomal protein, highly conserved during evolution. It has been identified as a subunit of splicing factor SF3b, which, together with a second multimeric complex termed SF3a, interacts specifically with the 12S U2 snRNP and converts it into the active 17S form. The protein displays a characteristic intranuclear localization. It is diffusely distributed in the nucleoplasm but highly concentrated in defined intranuclear structures termed "speckles," a subnuclear compartment enriched in small ribonucleoprotein particles and various splicing factors. The primary sequence of SF3b(155) suggests a multidomain structure, different from those of other nuclear speckles components. To identify which part of SF3b(155) determines its specific intranuclear localization, we have constructed expression vectors encoding a series of epitope-tagged SF3b(155) deletion mutants as well as chimeric combinations of SF3b(155) sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified (i) a functional nuclear localization signal of the monopartite type (KRKRR, amino acids 196--200) and (ii) a molecular segment with multiple threonine-proline repeats (amino acids 208--513), which is essential and sufficient to confer a specific accumulation in nuclear speckles. This latter sequence element, in particular amino acids 208--440, is required for correct subcellular localization of SF3b(155) and is also sufficient to target a reporter protein to nuclear speckles. Moreover, this "speckle-targeting sequence" transfers the capacity for interaction with other U2 snRNP components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here