
The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems
Author(s) -
Wolfram M. Kürschner,
Zlatko Kvaček,
David L. Dilcher
Publication year - 2008
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0708588105
Subject(s) - carbon dioxide in earth's atmosphere , ecosystem , biota , terrestrial ecosystem , cenozoic , forcing (mathematics) , climate change , late miocene , paleoclimatology , ecology , paleontology , environmental science , geology , climatology , oceanography , biology , structural basin
The Miocene is characterized by a series of key climatic events that led to the founding of the late Cenozoic icehouse mode and the dawn of modern biota. The processes that caused these developments, and particularly the role of atmospheric CO2 as a forcing factor, are poorly understood. Here we present a CO2 record based on stomatal frequency data from multiple tree species. Our data show striking CO2 fluctuations of ≈600–300 parts per million by volume (ppmv). Periods of low CO2 are contemporaneous with major glaciations, whereas elevated CO2 of 500 ppmv coincides with the climatic optimum in the Miocene. Our data point to a long-term coupling between atmospheric CO2 and climate. Major changes in Miocene terrestrial ecosystems, such as the expansion of grasslands and radiations among terrestrial herbivores such as horses, can be linked to these marked fluctuations in CO2 .