
Chimeric Saccharomyces cerevisiae Msh6 protein with an Msh3 mispair-binding domain combines properties of both proteins
Author(s) -
Scarlet S. Shell,
Christopher D. Putnam,
Richard D. Kolodner
Publication year - 2007
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0704148104
Subject(s) - msh6 , msh2 , biology , dna mismatch repair , fusion protein , saccharomyces cerevisiae , microbiology and biotechnology , dna repair , chemistry , genetics , dna , yeast , gene , recombinant dna
Msh2–Msh3 and Msh2–Msh6 are two partially redundant mispair-recognition complexes that initiate mismatch repair in eukaryotes. Crystal structures of the prokaryotic homolog MutS suggest the mechanism by which Msh6 interacts with mispairs because key mispair-contacting residues are conserved in these two proteins. Because Msh3 lacks these conserved residues, we constructed a series of mutants to investigate the requirements for mispair interaction by Msh3. We found that a chimeric protein in which the mispair-binding domain (MBD) of Msh6 was replaced by the equivalent domain of Msh3 was functional for mismatch repair. This chimera possessed the mispair-binding specificity of Msh3 and revealed that communication between the MBD and the ATPase domain is conserved between Msh2–Msh3 and Msh2–Msh6. Further, the chimeric protein retained Msh6-like properties with respect to genetic interactions with the MutL homologs and an Msh2 MBD deletion mutant, indicating that Msh3-like behaviors beyond mispair specificity are not features controlled by the MBD.