z-logo
open-access-imgOpen Access
An essential role for cortactin in the modulation of the potassium channel Kv1.2
Author(s) -
Michael R. Williams,
Jonathan C. Markey,
Megan A. Doczi,
Anthony D. Morielli
Publication year - 2007
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0703865104
Subject(s) - cortactin , microbiology and biotechnology , endocytosis , phosphorylation , biology , tyrosine phosphorylation , actin binding protein , actin cytoskeleton , actin , proto oncogene tyrosine protein kinase src , dynamin , cytoskeleton , potassium channel , biophysics , biochemistry , cell
Ion channels are key determinants of membrane excitability. The actin cytoskeleton has a central role in morphology, migration, intracellular transport, and signaling. In this article, we show that the actin-binding protein cortactin regulates the potassium channel Kv1.2 and thereby provides a direct link between actin dynamics and membrane excitability. In previous reports, we showed that the tyrosine phosphorylation-mediated suppression of Kv1.2 ionic current occurs by endocytosis of the channel protein. Pull-down assays using recombinant-purified cortactin and Kv1.2 demonstrated that their interaction is direct and reduced by tyrosine phosphorylation of Kv1.2. This finding suggests a link between cortactin and Kv1.2 endocytosis. Here, we confirm that relationship and identify the molecular mechanisms involved. We use FRET to demonstrate that Kv1.2 and cortactin interactin vivo . By manipulating the cortactin-binding site within Kv1.2, we confirm that cortactin proximity influences channel function. We used flow cytometry in conjunction with cortactin gene replacement to identify C-terminal tyrosines, the fourth repeat actin-binding domain, and the N-terminal Arp2/3-binding region, as critical to Kv1.2 regulation. Surprisingly, cortactin's dynamin-binding Src homology 3 domain is not required for Kv1.2 endocytosis, despite that process being dynamin-dependent. These findings predict that cortactin-mediated actin remodeling in excitable cells is not only important for cell structure, but may directly impact membrane excitability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here