
MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity
Author(s) -
Sandra E. Wiley,
Anne N. Murphy,
Stuart A. Ross,
Peter van der Geer,
Jack E. Dixon
Publication year - 2007
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0701078104
Subject(s) - pioglitazone , mitochondrion , cytoplasm , integral membrane protein , protein family , inner mitochondrial membrane , chemistry , zinc finger , peptide sequence , thiazolidinedione , biology , membrane protein , biochemistry , microbiology and biotechnology , membrane , gene , type 2 diabetes , transcription factor , diabetes mellitus , endocrinology
Members of the thiazolidinedione (TZD) class of insulin-sensitizing drugs are extensively used in the treatment of type 2 diabetes. Pioglitazone, a member of the TZD family, has been shown to bind specifically to a protein named mitoNEET [Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM, Bannow CA, Lund ET, Mathews WR (2004)Am J Physiol 286:E252–E260]. Bioinformatic analysis reveals that mitoNEET is a member of a small family of proteins containing a domain annotated as a CDGSH-type zinc finger. Although annotated as a zinc finger protein, mitoNEET contains no zinc, but instead contains 1.6 mol of Fe per mole of protein. The conserved sequence C-X-C-X2 -(S/T)-X3 -P-X-C-D-G-(S/A/T)-H is a defining feature of this unique family of proteins and is likely involved in iron binding. Localization studies demonstrate that mitoNEET is an integral protein present in the outer mitochondrial membrane. An amino-terminal anchor sequence tethers the protein to the outer membrane with the CDGSH domain oriented toward the cytoplasm. Cardiac mitochondria isolated from mitoNEET-null mice demonstrate a reduced oxidative capacity, suggesting that mito- NEET is an important iron-containing protein involved in the control of maximal mitochondrial respiratory rates.