Open Access
Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events
Author(s) -
Gonzalo L. Vilas,
María M. Corvi,
Greg J. Plummer,
Andrea M. Seime,
Gareth R. Lambkin,
Luc G. Berthiaume
Publication year - 2006
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0600824103
Subject(s) - myristoylation , microbiology and biotechnology , kinase , protein kinase a , biology , c raf , chemistry , mitogen activated protein kinase kinase , phosphorylation
p21-activated protein kinase (PAK) 2 is a small GTPase-activated serine/threonine kinase regulating various cytoskeletal functions and is cleaved by caspase-3 during apoptosis. We demonstrate that the caspase-cleaved PAK2 C-terminal kinase fragment (C-t-PAK2) is posttranslationally myristoylated, although myristoylation is typically a cotranslational process. Myristoylation and an adjacent polybasic domain of C-t-PAK2 are sufficient to redirect EGFP from the cytosol to membrane ruffles and internal membranes. Membrane localization and the ability of C-t-PAK2 to induce cell death are significantly reduced when myristoylation is abolished. In addition, the proper myristoylation-dependent membrane localization of C-t-PAK2 significantly increased signaling through the stress-activated c-Jun N-terminal kinase signaling pathway, which often regulates apoptosis. Interestingly, C-t-PAK2 promoted cell death without compromising mitochondrial integrity. Posttranslational myristoylation of caspase-cleaved proteins involved in cytoskeletal dynamics (e.g., PAK2, actin, and gelsolin) might be part of a unique series of mechanisms involved in the regulation of the later events of apoptosis.