z-logo
open-access-imgOpen Access
A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network
Author(s) -
Daniel Menéndez,
Oliver Krysiak,
Alberto Inga,
Bianca Krysiak,
Michael A. Resnick,
Gilbert Schönfelder
Publication year - 2006
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0508103103
Subject(s) - biology , angiogenesis , promoter , cancer research , transcription factor , vascular endothelial growth factor a , transcriptional regulation , vascular endothelial growth factor , population , microbiology and biotechnology , gene expression , genetics , gene , vegf receptors , medicine , environmental health
The VEGF system is essential for angiogenesis. VEGF overexpression frequently correlates with increased microvascularity and metastasis and decreased spontaneous apoptosis. Although a precise mechanism has not been established, studies suggest that VEGF expression is negatively regulated by p53, a master regulator and tumor suppressor. There are no reports of additional components of the VEGF signal transduction pathway being part of the p53 transcriptional network. A target of VEGF, the VEGF receptor 1/flt-1, can regulate growth and migration of endothelial cells and modulate angiogenesis. VEGF appears to be up-regulated in various cancers in which flt-1 may have a role in tumor progression and metastasis. We identified a C-to-T SNP upstream of the transcriptional start site in ≈6% of the people examined. The SNP is located within a putative p53 response element. Only the promoter with the T SNP (FLT1-T) was responsive to p53 when examined with reporter assays or by endogenous gene expression analysis in cell lines with different SNP status. In response to doxorubicin-induced DNA damage, there was clear allele discrimination based on p53 binding at the FLT1-T but not FLT1-C promoters as well as p53-dependent induction of flt-1 mRNA, which required the presence of FLT1-T. Our results establish that p53 can differentially stimulate transcription at a polymorphic variant of the flt-1 promoter and directly places the VEGF system in the p53 stress-response network via flt-1 in a significant fraction of the human population. We suggest that the p53-VEGF-flt-1 interaction is relevant to risks in angiogenesis-associated diseases, including cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here