Open Access
Nucleoid remodeling by an altered HU protein: Reorganization of the transcription program
Author(s) -
Sudeshna Kar,
Rotem Edgar,
Sankar Adhya
Publication year - 2005
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0508032102
Subject(s) - nucleoid , transcription (linguistics) , biology , microbiology and biotechnology , dna supercoil , mutant , escherichia coli , transcription factor , gene , genetics , dna replication , linguistics , philosophy
Bacterial nucleoid organization is believed to have minimal influence on the global transcription program. Using an altered bacterial histone-like protein, HUalpha, we show that reorganization of the nucleoid configuration can dynamically modulate the cellular transcription pattern. The mutant protein transformed the loosely packed nucleoid into a densely condensed structure. The nucleoid compaction, coupled with increased global DNA supercoiling, generated radical changes in the morphology, physiology, and metabolism of wild-type K-12 Escherichia coli. Many constitutive housekeeping genes involved in nutrient utilization were repressed, whereas many quiescent genes associated with virulence were activated in the mutant. We propose that, as in eukaryotes, the nucleoid architecture dictates the global transcription profile and, consequently, the behavior pattern in bacteria.